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By using the approach via the aspect of form and general topology, as well as basic 
notions of abstract algebra, a theoretical framework has been developed which elucidates 
the mechanism of the additivity relationships between structure and properties in molecules 
having many identical moieties. The main theorem, the Asymptotic Linearity Theorem 
(ALT), together with an auxiliary theorem, the a Independence Theorem, implies that 
the zero-point vibrational energy (or total pi-electron energy for the case of alternant 
hydrocarbons) En of a linearly extended system B - A . - B '  having n repeating identical 
moieties has the asymptotic expansion E. = an  + fl + o(1) as n --) o o  where a ~ R is 
independent of the choice of the end moieties B and B'. The theorem being formulated 
in a general context, the actual implication of the ALT is much broader than the above 
two applications would indicate. 

1. Introduction 

Strong additive correlation between molecular structure and the zero-point 
vibrational energies in hydrocarbons has been known empirically for decades. Since 
Cottrell [1] first pointed out that the increment in zero-point vibrational energy per 
CH2 in paraffin hydrocarbons was approximately constant, several empirical additive 
formulae have been proposed. 
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Pitzer and Catalano [2] proposed an empirical equation with two parameters 
for paraffins. Shingu and Fujimoto [3-7] gave a more accurate and more general 
empirical equation with five parameters for paraffins, olefins, and aromatic 
hydrocarbons. They incorporated their equation as the zero-point energy term into 
their empirical equation for the atomic heat of formation of hydrocarbons [4,5,7], 
which also showed excellent agreement with the observed values. 

Recently, Schulman and Disch [8] provided a simple but less accurate empirical 
additive formula for hydrocarbons, 

ZPE(n, m) = 3.88n + 7 . 1 2 m -  6.19 (kcal/mol), (1.1) 

where n and m denote the numbers of C and H atoms, respectively. This formula 
is a refinement of what is possibly the most simple formula by Flanigan et al. [9], 

ZPE(n, m) = 2n + 7m (kcal/mol). (1.2) 

However, until recently, no substantial progress had been made to explain theoretically 
why the zero-point vibrational energies in those molecules should be additive to 
such a good approximation despite the delocalized and strongly varying terms that 
contribute to them. To elucidate the mechanism of this additivity is, in our opinion, 
one of the fundamental and important theoretical problems in structural chemistry. 

The purpose of the present paper is to establish a fundamental existence 
theorem for the above additivity relations using the approach via the aspect of form 
[ 10-  13] and general topology [ 10, 11, 13 - 16], as well as basic notions of abstract 
algebra [17, 18]. 

The main theorem, referred to as the Asymptotic Linearity Theorem (ALT), 
is based on previously established theorems (cf. section 3), the a Existence Theorem 
[11], the a Independence Theorem [11], and the a Representation Theorem [13], 
which have also been proved using the approach via the aspect of form and general 
topology. Thus, it is now possible to grasp and view these four fundamental theorems 
from a single perspective. 

These theorems are all applicable to the additivity problems of the total pi- 
electron energy [19-29] of alternant hydrocarbons (cf. refs. [11-  13] for detailed 
arguments for the unification of the problems of the ZPVEs and TPEEs). 

In section 2, we select a system of linear chains and formulate a concrete 
additivity problem of the ZPVEs. We then solve this special problem by proving 
the Asymptotic Linearity Theorem, which ignores the non-essential specific features 
and conditions involved in the formulated problem and thus makes it possible to 
unify the solutions of problems from different branches of molecular science. 

2. Formula t ion  of the problem and sketch of a solution 

Let ChN denote a linear chain with free ends consisting of N particles each 
of mass 1 and separation 1 which can vibrate harmonically under a restoring force 
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due to the first-neighbour interaction 1 [10,11, 13]. Set h/2 = 1 for simplicity. Then 
the ZPVE E N of the linear chain Ch N is expressed as 

N 
E N = £ (P(~i(KN)), 

i=1 

( 2 . 1 )  

where KN denotes the N x N positive semi-definite real-symmetric matrix given by 

= 

1 - 1  
-1 2 -1 

-1 2 

zeros 

z e r o s  

2 -1 
-1 2 -1 

-1  1 

(2.2) 

ZI(KN) denotes the ith eigenvalue (~q (KN) < ~,2(KN) -<. • • < Zi(KN) < . . .  < 2~N(KN)) 
of the real-symmetric matrix KN, and the q~ denotes the continuous function 
tp(t) = 101/2. 

Alternatively, EN may be written concisely as follows by defining the function 
of  the matrix (see refs. [10-13] for details): 

EN = Tr q~(KN). (2.3) 

Inspection of the graph of numerically obtained EN shows a strong linear 
correlation between N and EN. By numerical calculations, one can observe many 
similar asymptotic linear relationships between N and EL in analogous but more 
complex linear chains Char. 

However, for simplicity we shall here concentrate on a single case and formulate 
our problem as follows: 

PROBLEM 1 

T o  prove the existence of the asymptotic line aN + fl for the above ZPVEs 
EN of  linear chains Chs. 

Although instructive, the following ad hoc solution (cf. section 2 of ref. [10]) 
is not usable for general cases and we must look for another solution. This 
solution depends upon the incidental situation in which all the eigenvalues 
;q(KN) are analytically obtainable, and ~,N=ltp(~.i(KN) ) can also be analytically 
expressed, 
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N 

E N = ~ go(4 sin2((i - 1)rt/2N)) 
i=1 

= cot(•/4N) - 1 

= a N  + fl + o(1), (2.4) 

where a = 4/re, /3 = - 1, and o(1) denotes a function of N such that o(1) --) 0 as 
N .--) ,,o. 

In what follows, we shall make a sketch of another solution of  problem 1 
which is not ad hoc. Before doing so, it is profitable at this point to review the 
thought process of the solution of  a similar but simpler problem [11]: 

PROBLEM 2 

To prove the existence of limN~=EN/N ~ R for the ZPVEs EN of  linear 
chains ChN, without using the analytic solution of  eigenvalue problems of  KN. 

Let C(1) denote the real normed space of  all real-valued continuous functions 
defined on a closed interval I = [a, b] (a, b ~ R, a < b) equipped with the uniform 
norm I1" Ilu given by 

II go Ilu = sup I go(t) I. (2.5) 
t e l  

Let {MN} ~Xr(q) be a fixed repeat sequence with block-size q. 

Remark 

See section 3 for the definitions of the repeat space Xr(q) and the repeat 
sequence. It is easy to see that the matrix KN defined by (2.2) is the Nth term of  
a repeat sequence with block-size 1. Throughout this section, if the reader wishes, 
he may omit the reference to the definitions of  the repeat space Xr(q) and the repeat 
sequence, and assume that {MN} = {KN} whenever the statement {MN} ~ Xr(q) appears. 

Let 1 be a fixed closed interval which contains all the eigenvalues of MN for 
all N ~Z+. Such an interval I will be called compatible with {MN} (cf. ref. [10] for 
the existence of such an interval). 

Define a mapping Jra: C ( 1 ) ~  {T, F} by 

~(go) = 

T if lim [Tr go(MN) ]/N ~ R exists, 
N-->,'~ 

F if lim [Tr go(MN) ]/N ~ • does not exist. 
N - - ~  

(2.6) 

We could solve problem 2 in two steps (cf. ref. [1 1] for essentially the same 
formulation of  steps (I) and (II)): 
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(I) za(P) = {T}, (2.7) 

(II) z a ( P  ) = {T}, (2.8) 

where P denotes the subset of C(1) of all polynomial functions with real coefficients 
and the upper bar denotes the closure operation in the normed space C(I). (Note 
that P = C(1) by the Weierstrass theorem.) 

The approaches used in the above steps (I) and (II) were referred to, respectively, 
a s  

(I) 

(II) 

the approach via the aspect of form, 

the approach via general topology. 

We shall employ the same approaches in establishing our Asymptotic Linearity 
Theorem. 

In order to make more precise the meaning of the transition from step (I) to 
step (II), let us define a topology on the set {T, F}. Henceforth, we let ({T, F}, OT) 
(or {T, F} for short where no confusion arises) denote the topological space with 
the underlying set {T,F} and the system of open sets Or= {9, {F}, {T, F}}. We 
remark that this topology is stronger than the trivial topology ot = {4, {T, F} } and 
weaker than the discrete topology Od = {4, {T}, {F}, {T, F} }, and that the toplogical 
space ({T, F}, or) is not Hausdorff. 

With this setting, za is a mapping from a topological space to a topological 
space, thus it is meaningful to ask whether or not za is a continuous mapping. 

In fact, za is continuous. To verify this, first define as in ref. [11] two 
functionals ~,  _a: C(I) ---) R by 

~(qg) = lim sup [Tr ~(M N)]/N, (2.9) 
N - - o ~  

ct(tp) = lim inf [Tr ~o(M N)]/N. (2.10) 
N---~ ,,~ 

Secondly, define a mapping f,~: C(I) ---) R 2 by 

f . ( ~ )  = ( ~ ( ~ ) , ~ ( ~ ) ) .  (2.11) 

Finally, define a mapping fA: R 2 ---) {T, F} by 

T if  (x ,y )  ~ A, 

fa((x, y)) = F if ( x , y ) ~ A ,  
(2.12) 

where A = {(x, y) E R 2, x = y} denotes the diagonal set. 
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Now consider the following diagram: 

Za 
C(O 

Diagram a. 

, { T , F }  

f~ 

R 2 

Recalling the fact that for any bounded real sequence an, l imn~=an exists in R if 
and only if lira supn~=an = lim infn__,=an, we can easily infer that 

zc a = f ~  o f a ,  (2.13) 

i.e. diagram a is commutative. 
Since inverse images of {T, F}, {T}, ~ (all the closed sets of ({T, F}, O-r)) 

byfA are, respectively, ~2, A, ¢ (all closed in R2), the mappingfzx is continuous. On 
the other hand, we already know that ~ and g are both continuous [11]; thus it 
follows that fa  is also continuous. 

Hence, by (2.13), ~ra is clearly continuous so that one can deduce eq. (2.8) 
from eq. (2.7). 

The essential feature of the above argument on the transition from step (I) 
to step (II) can be summarized as follows. Suppose that: 

(i) X is a topological space. 

(ii) Y is a T2-space (Hausdorff space), Y x Y denotes the product space with the 
box topology, and A denotes the diagonal set of Y x Y. (Note that A is a closed 
set since Y is Hausdorff.) 

(iii) Z =  ({T, F},  o.r) is the topological space with the system of open sets 
OT= {~, {F}, {T, F} }. 

(iv) f l ,f2:  X --) Y are continuous mappings. 

(v) f :  X ~ Y x Y is a mapping defined by f(~o) = (fl(~o),f2(q~)). (Note that f is 
continuous since both f~ and f2 are continuous.) 

(vi) fA: Y x Y-+ Z is a mapping defined by 

T if ( u , v ) ~ A ,  
(2.14) 

f a ( (u ,v ) )=  F if ( u , v ) ~ A ,  

(recall the fact that A is a closed set and note that fa is continuous). 
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(vii) n:: X---) Z is a mapping and the following diagram is commutative: 

/1: 
X -~Z 

Y x Y  

Then zc is continuous. Moreover, for any subset X0 of X, (I) implies (II): 

(I) ~(Xo) = {T}, (2.15) 

(II) g (xo)  = (T}. (2.16) 

We shall utilize this thought process for establishing the Asymptotic Linearity 
Theorem. 

Now we can state the outline of the solution of problem 1. Let CBV(I) denote 
the real normed space of all real-valued continuous functions of bounded variation 
defined on a closed interval I = [a, b] (a, b ~ R, a < b) equipped with the norm I1" II 
given by 

n 

Ilq~ll = sup IqKt) l + sup ,~_~ I ~o(tj) - tp(tj_a)l. (2.17) 
t e l  A:a=tl<tz<...<tn=b j = l  

As in the solution of problem 2, let {Ms} ~Xr(q) denote a fixed repeat sequence 
with block-size q. Let I be a fixed closed interval which contains all the eigenvalues 
of MN for all N E 7/+. 

Define a mapping z¢/3: CBV(1) --~ {T, F} by 

I 
T if Tr ~o(MN) has an asymptotic line, 

~r/~(q~)= F if Tr ~O(MN ) does not have an asymptotic line. 
(2.18) 

We then proceed in three steps to obtain 

(I) ;'r/3(P) = {T}, (2.19) 

(II) zc/3(P ) = (T}, (2.20) 

(III) q~ e P (~> 0). (2.21) 

Here, P denotes the subset of CBV(1) of all polynomial functions with real 
coefficients defined on I, the upper bar denotes the closure operation in the normed 
space CBV(1), and ~o~ ~ CBV(1) denotes the function defined by tp~(t)= I tl ~. Note 
that (II) and (III) solve problem 1. 
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3. Theory  

3.1. PRELIMINARIES 

We shall first review necessary terminology and theorems. Throughout, let 
7/+, R, R~, C denote, respectively, the set of  all positive integers, real numbers, non- 
negative real numbers, and complex numbers; and by "for all N >> 0", we mean "for 
all positive integers N greater than some given positive integer". 

Let M denote an n × n Hermitian matrix and let ~o denote a real-valued 
function defined on a subset S c R such that the subset S contains all the eigenvalues 
of  M. Then we may define the matrix ~o(M) as 

q~(M) = U diag(cp(~), q~(2.2) . . . . .  ~p(~.n))U -1, (3.1) 

(cf. refs. [10-13]) ,  where U is an n × n unitary matrix such that 

U-1MU = diag(&l, ,Tt 2 . . . . .  ,Ttn). (3.2) 

Let I = [a, b] (a, b ~ R, a < b) denote a closed interval and let P(I) denote 
the set of  all polynomial functions with real coefficients defined on I. Suppose that 
the interval I contains all the eigenvalues of  M. Then for any ~o ~P(1)  with 
q)(t) = Co tO + Cl tl + . . . + ckt k, the matrix ¢p(M), defined as above, may be expressed 
by 

q)(M) = Co M° + QM 1 + . . .  + ckM k, (3.3) 

where M ° denotes the n × n unit matrix. 
By eq. (3.3), we can rephrase a result which was obtained previously [10] 

by using the approach via the aspect of  form. 

THEOREM 1 (PALT) 

Let {MN} ~X , (q )  be a fixed repeat sequence, let 1 be a fixed closed interval 
compatible with {MN}. Then, for any element ~0 ~ P(1), there exist a(q~), fl(~0) ~ R 
such that 

Tr q)(MN} = a({o)N + ~(~0) (3.4) 

for all N >> 0. 

This theorem is of  vital significance for establishing the ALT. We shall call 
it the Polynomial Asymptotic Linearity Theorem (PALT) in view of  the analogous 
assertion made in the ALT. 

Now we shall recall the notion of  the repeat space X,(q) and related terminology 
[10, 11, 13]. 

Fix a q ~ 7/+ and let X(q) denote the set of  all matrix sequences whose Nth 
term MN is an arbitrary qN × qN real symmetric matrix, N E 7/+. This set obviously 
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constitutes a linear space over the field R with term-wise addition and scalar 
multiplication, 

{MN} + {M~v} = {M N + M'N}, (3.5) 

k{MN} = {kMN} , (3.6) 

N E7/+. 
We defined three fundamental subspaces Xr(q), Xa(q), and Xlj(q) of  X(q). 
Let PN denote an N × N real-orthogonal matrix given by 

= 

<0 1 
0 zero~ 

1 
zeros 0 1 

1 0 

(3.7) 

The subspace Xr(q) is defined to be the set of all matrix sequences {MN} ~X(q) 
such that, for all N >> O, 

MN = AN + B N ,  (3.8) 

where AN, BN a r e  qN x qN real symmetric matrices having the forms given below: 

tl 

AN = ~_~ Pffv ® Qn, (3.9) 
n = - - l )  

where v is a non-negative integer, Q_.,  Q_,, + ~ . . . . .  Qo are q x q real matrices, v 
and Qn are constant and independent of N, P~ with n ~ {-2 ,  - 3  . . . .  } is defined to 
be (p~l)-n which equals the transpose of P~ n, and the symbol ® denotes the Kronecker 
product [30]. (Note that since AN is symmetric, Q-n must equal the transpose of  Qn 
for all n E {0, 1, 2 . . . . .  v}.) AN is defined for all N ~ 7/+ with N > 2v + 1. 

The matrix BN has the form 

IW_  (3.10) 

where 14/1, W2, W3, and W4 are qw x qw real matrices, where w ~ 7/+, and w and Wj 
are constant and independent of N. BN is defined for all N 6 7/+ with N > 2w. 

Similarly, Xa(q) is defined by setting MN = AN in eq. (3.8) and Xo(q) by 
setting MN = BN. 
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Note that in the linear space X(q), subspace Xr(q) is the sum of subspaces 
Xa(q) and Xij(q). One can equivalently define Xr(q) to be the sum of these subspaces 
after defining them first. 

We called Xr(q), Xa(q), and Xo(q), respectively, the repeat space, alpha 
space, and beta space with block-size q, and each element of X,(q), X~(q), and 
Xo(q), respectively, a repeat sequence, alpha sequence, and beta sequence. 

Let {MN} ~X~(q) be a repeat sequence. A closed interval I = [a, b] 
(a, b ~ R, a < b) was said to be compatible with {MN} if all the eigenvalues of MN 
are contained in the interval I for all N ~ Z  + (cf. ref. [10] for the existence of such 
an interval I for any repeat sequence). 

The following theorems 2, 3, and 4, together with the above-stated 
theorem 1, form the basis for proving the ALT. 

THEOREM 2 (a EXISTENCE THEOREM) 

Let {MN} ~X~(q) be a fixed repeat sequence, let I be a fixed closed interval 
compatible with {MN}. Then, for any element ¢p of the normed space C(I), there 
exists an a(~o) ~ R such that 

[Tr q~(MN)]/N --~ a(q~) as N -~ oo. (3.11) 

THEOREM 3 (a INDEPENDENCE THEOREM) 

Let {MN}, {M,~} ~X,(q) be fixed repeat sequences, such that {MN} - {Mk} 
Xo(q), let I be a fixed closed interval compatible with both M N and Mk. Define 

two functionals a, a" : C(I) ~ R by 

a(~p) = lim [Tr ~O(MN) ] IN, (3.12) 
N---),~ 

a'(~p) = lim [Tr ¢p(M~)]/N. (3.13) 
N--*** 

Then, 

a(~p) = a'(~p) (3.14) 

for all ~p ~ C(1); that is, a = a ' .  

THEOREM 4 (a REPRESENTATION THEOREM) 

Let {Mu} ~X,(q) be a fixed repeat sequence, and let F ~ Hf(q) be the FS map 
associated with the repeat sequence {MN}. Let I be a fixed closed interval compatible 
with both {MN} and F. 
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Define two functionals a,  12int: C(1) ---> R by 

a(cp) = lim [Tr ¢p(MN)]/N, (3.15) 
N--~oo 

It  

aint(tp) = (1/2rc)]  Tr tp(F(O)) dO, (3.16) 

tp ~ C(I). Then, 

t~(~0) = czint(~0) (3.17) 

for all tp ~ C(I); that is, a = a int. 

Remark 

For the definition of Hf(q), the FS map, and the compatibil i ty of  I with 
F ~Hf(q) ,  see ref. [13]. In what follows, we shall not use this terminology, but use 
only hitherto explained notions to minimize the preliminaries. 

3.2. ASYMPTOTIC LINEARITY THEOREM 

NOW we  are r eady  to state o u r  m a i n  t h e o r e m :  

THEOREM 5 (ALT) 

Let {MN} ~Xr(q) be a fixed repeat sequence, let 1 be a fixed closed interval 
compatible with {MN}. Then, for any element tp ~ P in the normed space CBV(I),  
there exist a(tp), f l ( tp)~ R such that 

Tr tp(MN) = a(tp)N +/3(tp) + o(1) (3.18) 

as N ---> ,,o. 

To prove this theorem, we shall utilize the mapping to/3 defined by (2.18). 
First, observe that statement (I) follows directly from the PALT and that statement 
(II) is equivalent to the assertion of  the ALT: 

(I) zl~(P ) = {T} ~ theorem 1 (PALT), 

(II) ~rfl(P) = {T} ¢:~ theorem 5 (ALT). 

Next, note that if statement (I) is true and zfl is continuous, then statement (II) is 
true (see the end of  this section). Thus, for the proof  of  the ALT, we see that we 
have only to prove the continuity of the mapping z/~. 
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Recall diagram a, and consider the following diagram which involves the z/3, 
the fA defined in (2.12), and three other mappings fo, f/~, and E" 

CBV(I) z/~ > {T, F} 

E 

.) 

h 

CBV(I') R 2 

Diagram ft. 

This diagram possesses, in the upper-right triangular part, an analogous structure 
to that of  diagram a. We shall at first focus attention on this triangular part. 

The mapp ingfo  is defined (recall the analogous definit ion o f f a )  by using two 
functionals fl and 13, 

= (3.19) 

The fl, t3" CBV(I) --) R are defined as follows (that fl, 13, and f/~ are well defined 
will be clear later): 

w 

fl(qg) = lim sup fin (q0, (3.20) 
N--),~ 

fl(~0) = lim inf flN(qg), (3.21) 
N~oo 

where fiN: CBV(1) ---) R are linear functionals defined by 

flN( ~O) = Tr ~O(MN) - a(  ~o)N, (3.22) 

and where a:  CBV(1) ---) R is the linear functional defined by 

a(qg) = lim [Tr q~(MN) ]/N. (3.23) 
N . - ~  

Note that the limit in (3.23) always exists in 1~ whenever  ~o 6 CBV(I) a C(I) by the 
a Existence Theorem. 

Recall the fact that a real sequence E N has an asymptotic line, i.e. EN = aN 
+ ]3+ o(1), N---) ~, for some a, 13~R, if and only if the limits a =  limN_~,(EN/N) 
and t3 = l imN-~(EN -- aN) exist in •. Thus, bearing in mind that z#(~o) = T if and 
only if limN_.,=13N(~0) exists in R, one easily verifies that 
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7r# = fa  ° f/3, (3.24) 

similar to zc a = f?x o fa in diagram a. 
Since we know that fa is continuous, to prove that z/3 is continuous it is 

enough to show that f# is continuous. To prove the continuity of f~ ,  we now turn 
our attention to the lower-left triangular part of diagram ft. 

Fix an {M~¢} eXa(q )  and an {M~} eX~(q)  such that 

{M N} = {M' N} + {M~} (3.25) 

for all N E T/÷, and fix a closed interval I '  which contains the interval I and is 
compatible with both {MN} and {M~}. 

Define E:  CBV(1) ---) CBV(I ' )  by 

¢p(a) if t E [A,a), 

E( tp ) ( t )=  qg(t) if t ~ [ a , b ] ,  

tp(b) if t ~ ( b , B ] ,  

(3.26) 

where I = [a, b], I '  = [A, B], (A < a < b < B). The mapping E is obviously linear, i.e. 
the relations 

E(tpl + ~0 2) = E(tpl) + E(rP2), (3.27) 

E( krpl ) = kE( ~o 1 ), (3.28) 

hold for all tpl, tp2 ~ CBV(1) and k E R. Moreover, the linear mapping E is isometric, 
i.e. the equality 

II E( o)II = II cp II (3.29) 

holds for all ~o E CBV(I), which can be easily verified by observing that the CBV 
norm is expressed as the sum of the uniform norm and the total variation, and that 
E preserves both of  them. 

Equations (3.27), (3.28), and (3.29) show that E is a bounded linear operator 
from the normed space CBV(1) to the normed space CBV(I ' ) .  Thus,  we see that E 
is a continuous mapping.  

The definition o f f ~  is quite analogous to that o f fo :  

= (3.30) 

Here, fl*, ]3*: CBV(I ' )  ---) R are two functionals defined as follows (that they are 
well defined will be shown below): 
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fl*(ep) = lim sup flN(~O), (3.31) 

fl*(cp) = lim mf  fl~(cp), (3.32) 
- -  N - ~ ¢ ¢  

where /TN: CBV(I ' )  ---) R are linear functionals defined by 

fl~(~o) = Tr ¢P(MN) -- O~*(q))N, (3.33) 

and where a*" CBV(I ' )  ---) R is the linear functional defined by 

a*(~0) = lim [Tr ¢P(MN) ] /N.  (3.34) 
N---~ 

Note that the limit in (3.34) always exists in R whenever (p ~ CBV(I ' )  c C(I') by 
the a Existence Theorem. 

Now we shall introduce an estimate of fiN(P) which plays an important  role 
in establishing the ALT. 

PROPOSITION ES# 

There exists a c ~ R ~ a n d  an n 2~ + such that 

ES#" I fin (¢P) I <- c II ~0 II (3.35) 

holds for all (p E CBV(I ' )  and all N > n. 

In this section, we assume the validity of proposition ES#, whose proof  will 
be given later. 

By the definit ion of fl~c(q~) and proposition ES#, fiN(P) with ~0 ~ CBV(I ' )  is 
a bounded real sequence so that its.limit superior and limit inferior are both real 
numbers.  Thus, we see that both fl and [3" are well defined. 

Let ~ ~ CBV(I) be arbitrary, and put ~o = E(~b) ~ CBV(I ') .  Then by the definition 
of E and the function of  the matrix, we have (P(MN) = ~o(MN) for all N ~ 7/+, from 
which is follows that 

fin (q~) = fin (~0) (3.36) 

for all N E Z  +. Thus, we can infer that fl and fl in (3.20), (3.21) are also well 
defined. 

Moreover,  by (3.36) one easily obtains that 

f/3 = f/~ ° E. (3.37) 

Hence,  by (3.24) and (3.37), we obtain: 
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P R O P O S I T I O N  1 

Diagram 13 is commutative. 

We wish to have the following: 

P R O P O S I T I O N  2 

All the mappings (E, f~, f~, f~, and g3) in diagram t5 are continuous. 

Proo f  

In view of proposition 1, and the continuity of E and f t ,  which we have 
already demonstrated, for the proof of proposition 2 we have only to show the 

• • p * • • - - *  * 

contmmty of f~, or equivalently, the continuity of both 13 and ~ . 

Let ~Pl, qr2 E CBV(I ' )  be arbitrary. Recall the fundamental inequalities 

I lim sup a N - lim sup ~ 1  5 lim sup [ a N - bNI, 
N ~ o o  N ~  N ~  

(3.38) 

I lim inf a N - lim inf bNI ~ lim sup I aN -- bNI, 
N ~ o o  N ~ o o  N ~ o o  

(3.39) 

which are valid for any bounded real sequences aN and b N. Inserting aN =/~N(q)l), 
bN = /~u(q~), we obtain 

[ ~*(~Pl) - fi*(q92) [ < hm sup 1 13N (¢Pl) -- 13N(q92) l, 
N-coo 

(3.40) 

113"(q~1) - 13"(q~2) [ -< lira sup 113N(cPl) - 13N(CP2) I. (3.41) 
N-~oo 

On the other hand, by the linearity of/TN and proposition ES#, there is a c ~ R~ such 
that the inequality 

lim sup 113N (~01) -- 13N (q~2) I < C II ¢Pl - ~02 II 
N---)oo 

(3.42) 

holds independently of the choice of ~0l, q)2 ~ CBV(I ' ) .  Therefore, we obtain 

I~*(gol) - ~*(q~2)I < c II ~P~ - ~P211, (3.43) 

113"(¢Pl) - 13"(go2) [ < c II q~ - ~P21I, (3.44) 

for all ~o 1, ~ e CBV(I ' ) ,  which imply that both ~* and 13' are Lipschitz continuous, 
thus continuous. [] 
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Now we can give the 

Proof of theorem 5 (ALT) 

By theorem 1 (PALT), we have z~(P) = {T}. However, z# is continuous by 
proposition 2, so that z~ (P )  c {T} = {T}. On the other hand, clearly z/~(F) D 7r/3(P) 
= {T}. Therefore, /r/~(P) = {T}. [] 

3.3. ESTIMATE ES# 

The proof of  proposition ES# can be reduced to proving the following two 
propositions, ES1 and ES2. Using the a Independence Theorem and the triangle 
inequality, one easily sees that the assertion of proposition ES# immediately follows 
from those of  propositions ES1 and ES2. 

PROPOSITION ES1 

There exists a c ~ R~ and an n ~ 7/+ such that 

ES 1" I Tr  ~o(M N ) - Tr ¢p(M~ ) [ < c II ~0 II 

holds for all ~o ~ CBV(I ' )  and all N > n. 

(3.45) 

PROPOSITION ES2 

There exists a c ~ R~ and an n ~ 7/+ such that 

ES2: ITrq~(M;v) - a'(~p)N I --- cll~Pll (3.46) 

holds for all ~o ~ C B V ( I ' )  and all N >  n, where a'(~o) is def ined by a'(cp) 
= lim [Tr ~o(M~v)] ]N. 

N--~** 

The following two sections are devoted to establishing the above propositions 
ES1 and ES2. 

3.4. ESTIMATE ES1 

TO prove proposition ES 1, we need the following well-known theorem [31,32] 
and lemma 1. 

THEOREM (STURMIAN SEPARATION THEOREM) 

Let H denote an oo × oo Hermitian matrix (Hij = (Hji)* E C for all i, j E 7/+). 
Consider the sequence HN of  N × N Hermitian matrices defined by 
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(HN)ij = (H)i j , (3.47) 

i , j  e {1, 2 . . . . .  N}, N ~77 +. Let 2~h(HN) denote the hth eigenvalue of  H N (~I(HN) 
< A2(HN) < .  • • < Ah(HN) <.  • • < A.N(HN)). Then for each N e 7] +, 

~h(nN+l) ~ ~h(nN) ~ ~h+l(nN+l) (3.48) 

holds for all h ~ { 1, 2 . . . . .  N}. 

Before stating lemma 1, we fix some notation. Let I = [a, b] be a closed 
interval. By BV(I), we shall denote the set of  all real-valued functions of  bounded 
variation defined on I. By V/(~0), with ~0 ~ BV(I), we shall denote the total variation 
of  function ~o on interval I. 

LEMMA 1 

Let n E T  with n > 2 ,  let K =  {kl, k2 . . . . .  kr} be a subset of  {1,2 . . . . .  n} 
consisting of  r distinct elements (1 < r < n), and let L = { 1, 2 . . . . .  n} \K .  Let M and 
M'  be n x n Hermitian matrices such that the i j th entries of  M and M'  coincide for 
all (i, j )  ~ L x L, i.e. such that 

(M - M') i j  = 0 (3.49) 

for all ( i , j )  E L x L. Let I = [a, b] be a closed interval which contains all the eigenvalues 
of  both M and M'.  Then we have 

ITr q)(M) - Tr ~0(M') I < rVl(q)) (3.50) 

for all ~o ~ BV(I). 

Proof  

(1) In the case K =  {kl}, k 1E {1, 2 . . . . .  n}: If k 1 :# n, apply the similarity 
transformation to M and M '  which exchanges the k~th column (row) with the nth 
column (row) of  the matrices. Under the similarity transformation, the eigenvalues 
of matrices are invariant; thus, we may assume k~ = n without loss of  generality. 

Let Mo denote the ( n -  1) x ( n -  1) Hermitian matrix defined by 

(Mo)ij = (M)ii, (3.51) 

i , j  E {1, 2 . . . . .  n -  1}. P u t ~  = a, ,~j= ~j(Mo) fo r j  ~ {1, 2 . . . . .  n -  1}, and ;b,= b. 
Then, by the Sturmian Separation Theorem, we have 

&h-1 < 2h(M),  2h(M')  < "~h (3.52) 
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for each h ~ { 1, 2 . . . . .  n}. It follows that 

I Tr ~p(M) - Tr ¢p(M') [ = 

<_ 

I/: ~O(/~h(M)) -- Z ~O(~h(M')) 
h=l h=l 

?l 

Z I ~0(;I.h(M)) - ~0(&h(M')) I 
h=l 

<_ Vl(q~ ). (3.53) 

(2) K = {kl, k2 . . . . .  kr}" Recalling the assumed relation between M and M' ,  
M can obviously be expressed as M ' +  (modification on kith column and row, 
j E {1, 2 . . . . .  r}); 

M = S O + (I~ 1 + ~2 + "  " " + ~ r ) '  (3.54) 

where 6o = M' ,  tSt with t ~ { 1, 2 . . . . .  r} are n x n Hermitian matrices whose components 
are all zero except for the ktth column and kith row. By considering an extension 
of  ~o as in (3.26), we may assume that I contains all the eigenvalues of  Y-t=o 6t. 

Thus, applying (1) r times, we have 

_< Trrp 8, -T r rp  6 t <- rVl( O). (3.55) 
s=l t=0 

[] 

Now we are ready to give the 

Proof  o f  proposition ES1 

By the definition of  the beta sequence with block-size q, for all integers N 
greater than some positive integer n, we have 

M N - M ' N = M ~ =  I 
Wl 

ze ros  

% 

F4 
(3.56) 

where W1, W2, W3, and W4 are qw x qw real matrices, and where w ~ 7/+, w and Wj 
are constant and independent of N. Note that both MN and M~, are Hermitian matrices. 
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Thus, we may apply lemma 1 and obtain 

ITr q~(MN) - Tr ~0(M~,) I < 2qwVr(~p) < 2qw II ~o II (3.57) 

for all tp E CBV(I') and all integers N greater than the positive integer n. [] 

3.5. ESTIMATE ES2 

Recall first the notions of the alpha space and alpha sequence with block-size 
q. By the definition of the alpha sequence, M~, can be expressed by 

1) 

M~ = Z P ;  ®Qn 

for all N >> 0, where the symbols on the right-hand side are as in (3.9). 
To prove proposition ES2, we shall utilize the Hermitian matrix 

(3.58) 

v 

F(O) = ~ (exp (inO))Q,, (3.59) 
n =  --1) 

0 ~ R, and the integral representation a im of a given in theorem 4. Namely, we use 
the equalities 

N q 

Tr qg(M~) = ~ ~ gO(&h(F(2xr/N))), (3.60) 
r = l  h = l  

2 ~  

S a'(tp) = (1/2~) ~ Cfl(~h(F(O)) ) dO, 
h=l 

0 

(3.61) 

which are valid for all ~p ~ CBV(I') c C(I') and all N >> 0. 

Remark .~<. (See ref. [13] for details) 

(i) We let ~h(F(O)) denote the hth eigenvalue of the Hermitian matrix F(O) 
as in the case of real-symmetric matrices. 

( i i)  For all N>>0,  the set of all the eigenvalues of M~, is given by 
{;~h(F(2rcr/N)): h ~ { 1, 2 . . . . .  q}, r E { 1, 2 . . . . .  N} }. 

(iii) The function f h: 0~-~ ,~h(F(O)) defined on R is real-valued, continuous, 
and periodic with period 2re, for each h ~ { 1, 2 . . . . .  q}. The range of each function 
fh is contained in the interval I ' ,  which was assumed to contain all the 
eigenvalues of M~ for all N ~ 7/+. (In other words, the mapping F is compatible with 
the interval I ' . )  
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Let I " =  [0, 2re], and consider the following diagram: 

c B v q ' )  

C B V ( I " )  ) R 

Diagram '~" 

Here, mappings /3,~, G, and /3,~ are defined by 

fl~ (~p) = Tr qg(M~) - a'(~o)N, (3.62) 

q 

G(q~) (0) = ~ ~O(~h(F(O)), 
h=l 

(2; 1 N 

fl~(qg) = ~_~ qg(2xr/N) - (l /2x) qg(0) dO N. 
r=l 0 

(3.63) 

(3.64) 

We shall demonstrate the validity of proposition ES2 in four steps by proving 

PROPOSITION ES2' 

Let /3k, G, /3,~ be as above. Then the following statements are al! true: 

(i) There exists a c ~ R~ such that 

II G(q~)II -< c II ~P II (3.65) 

holds for all ~o ~ CBV(I ') .  

(ii) For all g ~ CBV(I")  and all N ~ ;Y+, 

I/3~ (g) I - II g II (3.66) 

holds. 

(iii) Diagram .~:. is commutative for all N >> 0, i.e. 

fl~v =/3~ o G (3.67) 

for all N >> 0. 

(iv) Proposition ES2 holds. 
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In what follows, we assume that the following theorem holds: 

THEOREM 6 

Let v be a non-negative integer, let Q_~,, Q_,,+~ . . . . .  Q,, be q × q real matrices 
such that Q-n = QT for all n ~ {0, 1, 2 . . . . .  v}. Let F(O) denote the q x q Hermitian 
matrix: F(O) = ~vn=_ u ein°Q n, 0 ~. [0, 2rg]. Let fh(O) denote the hth eigenvalue of  
F(O). Then function fh is piecewise monotone for each h ~ {1,2 . . . . .  q}. (By 
"piecewise monotone", we mean that there is a finite partition 0 = Xo < Xl < • • • < Xm = 2x 
of  the interval [0, 2~] such that fh is monotone on each subinterval [xj_l, xj], 
j ~ { 1 , 2  . . . . .  m}.) 

The proof  of  this theorem will be given later. 

Proof of  theorem ES2 

(i) Let ~o be any element of  CBV(I ') .  Consider any partition A: 0 = 0o --- 01 
< 02 < . • • < On = 2x of  the interval I"  = [0, 2x]. Then we obtain 

n q n 

~__~ IG(9) (0/) - G(~o) (0/_l)l < ~ ~ Iq~(fh(0i)) - ~0(fh(0i_l)) I 
i=1 h=t i=1 

(3.68) 

where m(h) denotes the number of  intervals of  monotonicity offh on [0, 2~x]. Here 
we have used theorem 6, which states that m(h)< ~ for all h ~ {1, 2 . . . . .  q}. 
Straight from the definition of  the total variation, we obtain 

V[0,2n](G(~o)) < re(h) Vt,(qg). (3.69) 

By (3.68) and the easily verifiable relation 

sup I a(q~) (0) I - q sup I q~(t) l, (3.70) 
0E[0,2n] t e l "  

one immediately obtains 
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II G(~0)II -< q sup I ~0(t) l + V/.(rp) 
te l"  

< max q, m(h)  II q~ II 

for all q9 6 CBV(I ' ) .  

(ii) The validity of  part (ii) follows from the following 

(3.71) 

T H E O R E M  7 

Let [a, b] denote a fixed closed interval on R. Let ,~N : CBV[a, b] -4 R denote 
linear functionals defined by 

N 

fiN (g) = ~., g ( x (N ,  r)) - (1/(b - a)) g(O) dO N, (3.72) 
r = l  a j 

N ~ 7/+, where x(N,  r) denotes the real number: 

x(N,  r) = a + (b - a ) r /N ,  (3.73) 

i.e. the coordinate of  the r th point of  N-equipartition of [a, b]. Then we have 

(1) IfiN(g)l < V[~,b](g), (3.74) 

(2) IfiN(g) I ~ Ilgll (3.75) 

for all N ~ Z + and g E CBV[a, b], where V[~,b](g) denotes the total variation of  g 
on [a, b], I1" II denotes the norm of  CBV[a, b]. 

P r o o f  o f  theorem 7 

(1) Let g be any element  of  CBV[a, b], let N be any positive integer. Since 
g is continuous on [a, b], by the Mean Value Theorem there exists a real number  
Ur ~ (x(N,  r - 1), x(N,  r))  such that 

x(N,r) 

g(O) = g(Ur)  ((b - a ) /N) .  dO 

x(N,r-l)  

(3.76) 

Therefore,  we have 
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(i )N (l/(b - a)) g(O) dO N = y_~ g(Ur) .  
r = l  

a 

From this, it follows that 

I~N (g)  [ = ~_~ g ( x ( N ,  r)) - ~_~ g (U  r)  
r = l  r = l  

< 

< 

(2) By the 

II g II = 

N 

{I g ( x ( N ,  r))  - g (Ur)  I + I g (Ur)  - g ( x ( N ,  r - 1))l} 
r = l  

N 

~.~ V[x(N,~-l),x(N,r)l(g) 
r=l  

(3.77) 

Via,hi(g). (3.78) 

definition of the norm of CBV[a, b], 

sup Ig(0) l+  Vla,bl(g), (3.79) 
Oe[a,b] 

the conclusion immediately follows from (1). 

(iii) This is an immediate consequence of  (3.60), (3.61) and the definit ions 
of/37v, G, and/3~. 

(iv) By (i), (ii), and (iii), there exist a c ~ IR~ and an n ~ 7/+ such that 

I/3;v (go) I - c II go II (3.80) 

holds for all q~ ~ CBV(I ' )  and all N > n, so that the assertion of  proposi t ion ES2 is 
true. [] 

It remains to prove theorem 6. We need three lemmas: 

LEMMA 2 

Let D be a unique factorization domain.  Let f, g be two polynomials  given 

f = ao xn + alx  n - l + .  . . + a n E D[x] (a o ;~0), (3.81) 

by 

g = bo xm + lhx rn-1 + . . .  + b m E D[x]. (3.82) 
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Let R ( f ,  g)  stand for the resultant of  the polynomials f, g. Then f and g have a 
common non-constant factor if and only if 

R(f ,  g) = 0. (3.83) 

Remark  

The proof  of  lemma 2 is analogous to that in ref. [17] for the case aobo ~ O. 
See also ref. [18] for the proof  of  the case in which D is a field. 

LEMMA 3 

Let D be a unique factorization domain of  characteristic zero. Let f be a 
polynomial given by 

f = ao xn + al xn-l  + .  . . + a n E D[x] (a o ~ 0 ) .  (3.84) 

Then a factorization of  the polynomial f into irreducible factors has multiple non- 
constant factors if and only if  the discriminant of f 

= e  t = 5 ( f )  ( f  , f ) O. (3.85) 

(cf. ref. [17] for the proof). 

Notat ion 

C°(1)  with 1 = [a, b] denotes the unique factorization domain of  all real 
analytic functions on the closed interval I. A real-valued function on a subset S c R 
is called real analytic on S if it is the restriction to S of  a function which is real 
analytic on some open set 0 D S. 

LEMMA 4 

L e t f ~  (C°[a,  b])[X] be a monic polynomial of  degree q ~7/+ over the unique 
factorization domain C°[a,  b] given by 

f = 2, ¢ + al2, q-1 + . . .  + aq. (3.86) 

Suppose that for any fixed 0 ~ [a, b], the polynomial 

fo = 2,q + al(O) 2`q-1 + .  • • + aq(O) (3.87) 

over the field R has q real roots, which we denote by 2`1o < 2`2o < • • • < 2,qo. Then 
all the 2,io's are piecewise monotone on [a, b]. 
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Proof  

Let 031 denote the discriminant o f f .  

(I) If 031(0) = 0 on [a, b], a factorization o f f  into irreducible factors has mult iple 
non-constant  factors. Therefore,  the proof  of  the lemma is reduced to the case: 

(II) 031(0) ~ 0 on [a, b]. Then the number  of  zeros of 031 on the compact  set 
[a, b] is finite since 031 G CO'[ a, b]. 

Suppose one of the Aio's, say A10, were not piecewise monotone  on [a, b], 
then there would exist an open interval (a ' ,  b ' )  c [a, b]\{O ~_ [a, b] : 031(0) = 0} 
with the following properties: 

(1) 7~1o, ~ o  . . . . .  ;~qO are real analytic on (a' ,  b ')  (by the Implicit Function Theorem). 

(2) For 0 ~ (a ' ,  b ')  and i ~ j ,  we have A.io ~ ~.jo. 

(3) dAlo/d0 has infinitely many zeros on (a ' ,  b').  

Let the function 032 ~ C°~[a, b] be defined by 

032 = R( f ,  D f/DO), (3.88) 

where Of~DO = a~A q-l + a ~  q-2 + . . .  +aq ~ (C°~[a, b])[&]. By the fundamental property 
of  the resultant, 032 can be written as 

032 = A f  + B(Df/~O), (3.89) 

where A and B are some polynomials  in (C~[a, b])[&]. 
All the zeros of  d&10/d0 on (a ' ,  b ')  are zeros of  092, by (3.89) and the 

equalities 

f(Alo) = 0, (3.90) 

(Df/DO)(X1o) = - (Df/DA) (Xlo) dXlo/d0, (3.91) 

valid for all 0 ~ (a',  b'). Thus, 03 2 has infinitely many zeros on [a, b] so that ah(0) - 0 
on [a, b]. Using lemma 2, one concludes that f and i)f/i)O have a c o m m o n  non- 
constant factor. 

Without loss of  generality, we may assume tha t f i s  irreducible by the following 
easily verifiable fact: Suppose we are given a factorization of f ' f  = I-Ij~lfj,  
where all the fj are irreducible monic polynomials. Then there exists a j ~ { 1,2 . . . . .  m} 
such that for any 0 ~ (a ' ,  b ') ,  fj(;~lo) = O. 

Now recalling the fact that f is a monic  polynomial ,  clearly we have 

deg(Of/DO) < deg( f ) .  (3.92) 
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Bearing in mind tha t f i s  irreducible and tha t f and  ~f /30  have a common non- 
constant factor, we infer that ~f /30  = 0. Hence, 2.1o is piecewise monotone (in fact, 
constant) on [a, b]. A contradiction. Therefore, all the 2'1o's are piecewise monotone 
on [a, b]. [] 

Finally, we can give 

Proof  of  theorem 6 

Consider the characteristic polynomial 

[2"lq - F(0)[  = 0. (3.93) 

The left-hand side can be written as a monic polynomial of  degree q, 

2"q + al(O)2" q-1 + . . .  + aq(O). (3.94) 

In view of  the analyticity of  each entry of F(O) and the definition of  the determinant, 
the aj: 0 v-) aj(O) are obviously all analytic functions on C. They are real-valued 
on R since for each 0 ~ R, all the roots of  eq. (3.93) are real. In fact, the left-hand 
side of  eq. (3.93) can be expressed by 

q 
12"lq - F(0)[ = I-I  (2' - 2'h (F(O))), (3.95) 

h = l  

where 2'h(F(O)) denotes the hth eigenvalue of  the Hermitian matrix F(O), which is 
clearly real. 

Hence, we may apply lemma 4, and the conclusion of  theorem 6 follows 
immediately. [] 

3.6. STATEMENT (l-fl) AND SOLUTION OF PROBLEM 1 

To solve problem 1, it remains to prove statement (III) (statement (2.21)). We 
divide the proof of  statement (III) into two parts. 

Proof  of  statement (III) 

Let C 1 denote the subset of  CBV(1) of  all the C 1 functions. Recall the 
definition of  ~p~ and put 

U = {¢p¢ • ~ > 0}. (3.96) 

First, we sha___ll show that C 1 is dense in the set U, i.e. U c C ~. Secondly, we 
shall prove that C 1 = P. 

(1) P u t / =  [a ,b] ,wherea<b.  I f a > O o r b < O ,  thenclearlywehave U c C 1 c -'~. 
Here, we shall assume that {0} ~ (a, b). The argument for the case in which a = 0 
or b = 0 is analogous and we omit it. 
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If  ~ > 1, then ~o~ is con t inuous ly  dif ferent iable  on  I = [a, b] so that  ~o¢ ~ C 1 for  
all ~ > 1 .  

For  any fixed ~ ~ (0, 1], cons ider  a C 1 funct ion  Cs with 0 < s _< lal,  Ibl def ined  

It is easy to ver i fy  that  ¢pg-Os is an even  funct ion  on [ - s ,  s], m o n o t o n e  
decreas ing  on [0, s], and van ish ing  on l \ [ - s ,  s]. Thus ,  we have 

sup I~p~(t) - ¢~(t) l = ¢s(0), (3.98) 
t e l  

Vt((P~ - ¢s) = 2~s(0). (3.99) 

II cp Ill = sup l (P(t) I + sup l ~p'(t) I- (3.101) 
t e l  t e l  

We wish  to ver i fy  that  P is dense  in X2. To  do this, we recall  the w e l l - k n o w n  
fact that  P is dense  in X1 [33]. T h e n  to p rove  that  P is dense  in X2, it is obv ious ly  
e n o u g h  to show that the I1" II1 no rm is s t ronger  than the I1" II n o r m ;  in o ther  words ,  
there exists  a real cons tant  K such that  

II q~ II - K II tp II1 (3.102) 

for all ~ o ~ C  1. 
Let  ~o be any e l emen t  o f  C 1 and let A: a = to < tl < t2 < • . .  < tn = b denote  any 

par t i t ion o f  interval  [a, b]. By the Mean  Value  Theo rem,  it fo l lows that  

t l  gl 

~__~lcp(tl) - (P(ti-1)l < ~ supl(p ' ( t ) l  Itl - ti-ll 
i=1 i=1 t e l  

= (b - a) sup l q~'(t) I. (3.103) 
t e l  

s ---> 0. Therefore ,  fo_.Ar any ~ ~ (0, 1], qg~ is also an e lement  of  C 1. Then  it immedia t e ly  
fo l lows that  U c C 1. 

(2) We first restrict  our  a t tent ion to the set C ~ and cons ider  two n o r m e d  spaces  
X1 = (C 1, I1" II1) and X2 = (C I, I1" II), where  I1" II1 is g iven  by 



244 S. Arimoto, M. Spivakovsky, Asymptotic Linearity Theorem 

Recalling the definition of the total variation, 

Vt(cp) < (b - a) supl~o'(t)l. 
tel  

Therefore, we obtain 

(3.104) 

II ¢P II -< m a x ( l ,  (b - a))II q~ IIi, (3.1o5) 

proving that P is dense in X 2. 

Retum to the original space CBV(1); by what has been proved above, we 
know that 

C 1 c P. (3.106) 

From this, we infer that C 1 c P. On the other hand, clearly P c C 1, whence P c C 1. 
Therefore, we conclude that 

C a = P. 

By (1) and (2), for each ~ > 0, we have 

tp~ ~ P ,  

as desired. 

(3.107) 

(3.108) 

[] 

Thus, the validity of statement (II) (or the assertion of the ALT) and statement 
(III) has been proved. Setting q = 1, ~ = 1/2, one obtains a solution of problem 1 
immediately. 

We note that the validity of hypotheses I and II in ref. [10] follows directly 
from the continuity of zoo and the validity of statement (III), respectively. 

For a better understanding of the ALT and its utility, we shall recall the 
following problem which was previously formulated in [10]: 

PROBLEM 3 

For a fixed matrix sequence {MN} ~Xr(q),  obtain a large enough set F of 
functions q~ such that for all ~o ~ F, the real sequence Tr (O(MN) has an asymptotic 
line. 

As can be easily seen by the argument of the present section, a solution of 
problem 3 also gives a solution of problem t. 

In fact, the ALT provides a direct solution of problem 3, and it gives, in a 
broader context, an indirect solution of problem 1. The unifying power, utility, and 
novelty of  the ALT stem from the new viewpoint to the additivity problems, which 
is associated with the formulation of problem 3 (cf. ref. [10] for a detailed explanation 
of the thought process leading to the formulation of this "reversed" problem (see 
especially p. 131 of  ref. [10])). 
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Now that the ALT has been established, it is interesting to ask the following 
question: 

Let {MN} ~X,(q) be a fixed repeat sequence, let P be as in the ALT, and 
let EN: P- -~ R denote the sequence of the functionals defined by EN(~) = Tr tp(MN). 
Fix a j ET/+ and a ~p ~ P. Then, do al(~), aE(tp) . . . . .  aj(~) ~ R  exist such that 

EN(tp) = al(tP)N + a2(tp)N ° + . . .  + aj(tp)N 2-j + o(N 2-j) (3.109) 

as N tends to infinity? 
I f j  = 1 or 2, then the answer to this question is obviously affirmative by the 

ALT. If q~ ~ P, the answer is also affirmative by theorem 1 (PALT). However, for 
general j ~ 7/+ and q~ ~ P,  the problem is yet to be investigated. 

Suppose, on the other hand, that we are explicitly given a special matrix 
sequence {MN} EX,(q) which can be (block) diagonalized, together with a special 
function tp ~ P. Then the answer to the above question could possibly be easily 
obtainable. 

For example, let us assume that the {Ms} equals {Ks} given by (2.2) and 
q~(t) = [tl 1/2 as in (2.1). Then, by using (2.4), for any j E 7/+, the corresponding real 
number sequence EN can be expanded by 

E N = alN + o.2 N° + . . .  + ajN 2-j + o(N 2-j) (3.110) 

as N tends to infinity, where al, a2 . . . . .  aj are real constants. (al = 4/re, a 2 = -1 ;  
one can express a3 . . . . .  aj in terms of Bernoulli 's number Bn by using the well- 
known power expansion (x/2)cot(x/2)= 1 -Y?~=l(BnxE~/(2n)!).) 

In the present paper, however, we are not concerned with those special cases 
in which the matrix sequence {MN} and the function tp are incidentally such that 
EN(tp) = Tr ~(MN) can be explicitly expressed and directly expanded as in (3.110). 
Nor are we concerned with similarly special cases in which EN(tp) = Tr tp(MN) can 
be semi-explicitly expressed and the asymptotic behavior of  EN(~) is fairly easily 
tractable (cf. ref. [13], section 5, for such cases where the MN are block-diagonalizable 
and EN(q~) can be expressed in terms of Riemann sums.) 

Although heuristic and instructive, the conventional approach that could, 
under special circumstances, lead to an equation of  the type (3.110) is too ad hoc 
to be effective for establishing the ALT and related theorems which are formulated 
in a new and broader context. 

Using the ALT and related theorems, one can also deal with the additivity 
problems of  small or intermediate size molecules which can be represented by 
{MN} ~Xr(q) with N = 1, 2, 3 . . . . .  The details of  this application of the ALT to 
smaller molecules will be published elsewhere. 

It should also be mentioned that the ALT, by virtue of the extensiveness of 
P c CBV(I) in the theorem, can be applied as well to the addivitity problems of  
thermodynamic quantities of molecules [34], which have been extensively investigated 
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by empirical chemists (cf. e.g. refs. [4-7]).  In this connection, the reader is referred 
to ref. [35] for a prototypical study of the size effect of vibrational thermodynamic 
quantities of solids, which employs the approximation of elastic continuum and the 
techniques essentially analogous to those used in deriving the asymptotic expansion 
of the real number sequence EN given by (3.110). 

It is also interesting and instructive to refer to the modem theory of bulk 
matter and thermodynamic limit. One can see, for example in a review article [36] 
and references therein, various techniques with which to obtain the asymptotic 
relations between the number of particles in physical systems and the magnitude of 
physical quantities. The reference to the modem theory of bulk matter might be 
profitable, especially to those readers who are familiar with the asymptotic relationships 
between structure and properties in hydrocarbons, although the theory of bulk 
matter can neither handle nor predict the properties of hydrocarbon molecules that 
have been experimentally studied in chemistry. 

4. Concluding remarks 

By statement (III), P in CBV(1) contains the absolute value function ~Pl, 
defined by ~pl(t) = Itl, t ~ I. Thus, the Asymptotic Linearity Theorem can be applied 
to the additivity problems of the TPEEs of altemant hydrocarbons. We remark that 
P is not dense in CBV(I), i.e. P ~ CBV(I). It can be shown that the Cantor function 
[37] defined on I, for instance, is an element of CBV(I) \P.  A concise characterization 
of P-is possible. This will make application of the ALT easier. Details will be 
published later, together with applications of the ALT to the additivity problems of 
thermodynamic quantities of molecules [34]. 
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